

Gear train - tasks

Gear train

If efficiency $\eta=1$

driven link (links) from which required forces and motions are obtained

$$
M_{i n} \omega_{\text {in }}=M_{o u t} \omega_{o u t}
$$

Gear box - example 1

Gear box - example 2

Gear train types

α	h	gear type
$\alpha=0$	$\mathrm{~h} \neq 0$	cylindrical
$\alpha \neq 0$	$\mathrm{~h}=0$	bevel (conical)
$\alpha=\pi / 2$	$\mathrm{~h} \neq 0$	worm
$\alpha \neq 0$	$\mathrm{~h} \neq 0$	helical

Planetary gear train definition

Most of simple and compound gear trains have the restriction that their gear shafts may rotate in bearings fixed to the frame.

If one or more shafts rotate around another shaft a gear train is called a planetary (or epicyclic) gear train

Planetary gear nomenclature

A simple planetary gear

Planetary gear box of the power split device

Simple planetary gear train (obtained from unmovable axes train)

Simple planetary gear train (obtained from unmovable axes train)

Properties of planetary gear train
\# Large velocity ratio (for compact gear train)
\# Ability to transfer large forces (and power)
\# One motor can drive few links (car differentials)
\# A few motors can drive one machine
\# Interesting trajectories of planet gear points
\# Gears and other parts must be manufactured in very high accuracy \rightarrow COSTS !!!
\# Ability to transfer large forces (power)

\# Ability to transfer large forces (power)

Planet gear 1

Planet gear 3

3 gear pairs take part in force transfer
Planet gear 2

The same power and ratio!

\# One motor can drive few links (two wheels)

engine

Planetary mechanism - trajectory (1)

Planetary mechanism - trajectory (2)

po-stop.sam

Planetary mechanism - trajectory (3)

Examples of trajectories

Examples of trajectories

Velocity ratio

External gear

$$
\left.\left.\begin{array}{l}
\omega_{1}=\frac{\mathrm{v}}{R_{1}} \\
\omega_{2}=\frac{\mathrm{v}}{R_{2}}
\end{array}\right\} \Rightarrow \frac{\omega_{1}}{\omega_{0}}=\frac{R_{2}}{R_{1}}=\frac{z_{2}}{z_{1}}(-1)\right)
$$

$$
\leftarrow R=\frac{m}{2} \mathrm{z}
$$

Velocity ratio
Internal gear

$$
\left.\begin{array}{l}
\omega_{1}=\frac{\mathrm{v}}{R_{1}} \\
\omega_{2}=\frac{\mathrm{v}}{R_{2}}
\end{array}\right\} \Rightarrow \frac{\omega_{1}}{\omega_{(2)}}=\frac{R_{2}}{R_{1}}=\frac{z_{2}}{z_{1}}(+1)
$$

Analytical method

Idea of analytical method

Gear train seen from carrier

	Revolutions in frame (gear 3)	Revolutions seen from carrier J
gear 1	n_{1}	$\mathrm{n}_{1 \mathrm{~J}}=\mathrm{n}_{1}-\mathrm{n}_{\mathrm{J}}$
gear 2	n_{2}	$\mathrm{n}_{2 \mathrm{~J}}=\mathrm{n}_{2}-\mathrm{n}_{\mathrm{J}}$
gear 3	$\mathrm{n}_{3}=0$	$\mathrm{n}_{3 \mathrm{~J}}=\mathrm{n}_{3}-\mathrm{n}_{\mathrm{J}}$
Carrier J	n_{J}	0

$$
\omega\left[\frac{1}{\mathrm{~s}}\right]=\frac{\pi n\left[\frac{\mathrm{rev}}{\mathrm{~min}}\right]}{30}
$$

$$
\frac{\omega_{u J}}{\omega_{s J}}=\frac{\omega_{u}-\omega_{J}}{\omega_{s}-\omega_{J}}=f\left(z_{i}\right)
$$

$$
\begin{aligned}
& \frac{\omega_{1 J}}{\omega_{3 J}}=\frac{\omega_{1}-\omega_{J}}{\omega_{3}-\omega_{J}}=\left[\frac{\omega_{1 J}}{\omega_{2 J}}\right] \cdot\left[\frac{\omega_{2 J}}{\omega_{3 J}}\right]= \\
& =\left[\frac{z_{2}}{z_{1}}(-1)\right] \cdot\left[\frac{z_{3}}{z_{2}}(+1)\right]
\end{aligned}
$$

$\frac{\omega_{1}-\omega_{J}}{\omega_{3}-\omega_{J}}=\frac{z_{3}}{z_{1}}(-1)$
$\omega_{3}=0 \quad \rightarrow \quad \frac{\omega_{1}-\omega_{J}}{-\omega_{J}}=\frac{z_{3}}{z_{1}}(-1)$

$$
\omega_{1}=\omega_{J}\left(\frac{z_{3}}{z_{1}}+1\right)
$$

"seen" from the carrier J:

$$
\frac{\omega_{3}-\omega_{J}}{\omega_{1}-\omega_{J}}=\frac{z_{1}}{z_{2}}(+1) \frac{z_{4}}{z_{3}}(+1)
$$

Since:

$$
\omega_{1}=0
$$

Then:

$$
\omega_{3} / \omega_{J}=?
$$

$$
\frac{\omega_{3}}{\omega_{J}}=1-\frac{z_{1} z_{4}}{z_{3} z_{2}}
$$

Assume toothnumbers : $z_{1}=101 ; z_{2}=51 ; z_{3}=99 ; z_{4}=50$

$$
\frac{\omega_{3}}{\omega_{J}}=1-\frac{101 \cdot 50}{99 \cdot 51}=\frac{-1}{5049}
$$

Graphical method (Velocity analysis)

$$
\begin{aligned}
& \omega_{2}=\frac{\omega_{J} A B}{R_{2}} \\
& A B=R_{1}+R_{2} \\
& \omega_{2}=\frac{\omega_{J}\left(R_{1}+R_{2}\right)}{R_{2}} \\
& \omega_{2}=\frac{\omega_{J}\left(\frac{1}{2} m z_{1}+\frac{1}{2} m z_{2}\right)}{\frac{1}{2} m z_{2}} \\
& \omega_{2}=\frac{\omega_{J}\left(z_{1}+z_{2}\right)}{z_{2}}
\end{aligned}
$$

Two driving gears (gear 1 and carrier)

$$
\begin{aligned}
& \text { 1. } \omega_{J} \rightarrow \mathrm{v}_{\mathrm{B}} \\
& \text { 2. } \omega_{1} \rightarrow \mathrm{v}_{\mathrm{C}}=\mathrm{v}_{\mathrm{D}} \\
& \text { 3. } S_{20}(0-\text { frame })
\end{aligned}
$$

Planetary gear train - graphical method

$$
\mathbf{v}_{B}=A B \omega_{J}
$$

$$
A B=R_{1}+R_{2} \quad \mathbf{v}_{B}=\left(R_{1}+R_{2}\right) \omega_{J}
$$

$$
\omega_{2}=\frac{\mathbf{v}_{B}}{R_{2}} \quad \omega_{2}=\frac{R_{1}+R_{2}}{R_{2}} \omega_{J}
$$

$$
\mathbf{v}_{D}=2 R_{2} \omega_{2}
$$

$$
\mathbf{v}_{D}=2\left(R_{1}+R_{2}\right) \omega_{J}
$$

$$
\mathbf{v}_{C}=\mathbf{v}_{D}
$$

$$
\mathbf{v}_{C}=2\left(R_{1}+R_{2}\right) \omega_{J}
$$

$$
\omega_{1}=\frac{\mathbf{v}_{C}}{R_{1}}
$$

$$
\omega_{1}=\frac{2\left(R_{1}+R_{2}\right) \omega_{J}}{R_{1}}
$$

$$
\omega_{1}=\left(1+\frac{R_{3}}{R_{1}}\right) \omega_{J}
$$

